If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=2x^2+35
We move all terms to the left:
100-(2x^2+35)=0
We get rid of parentheses
-2x^2-35+100=0
We add all the numbers together, and all the variables
-2x^2+65=0
a = -2; b = 0; c = +65;
Δ = b2-4ac
Δ = 02-4·(-2)·65
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{130}}{2*-2}=\frac{0-2\sqrt{130}}{-4} =-\frac{2\sqrt{130}}{-4} =-\frac{\sqrt{130}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{130}}{2*-2}=\frac{0+2\sqrt{130}}{-4} =\frac{2\sqrt{130}}{-4} =\frac{\sqrt{130}}{-2} $
| 3x+15=2x-9+5x | | -105-7x=-13x+3 | | 15(a-5)=3(5a+2) | | 65.35+d=127.25-37.50 | | (3x+42)+(6x+6)=180 | | 8b+9=9b+7 | | p+(–5)=–8 | | 5(x–6)=2x–18+2x | | -4(-8-x)=52 | | -6+(x/4)-4=(3/2)x+18 | | 12=-5.7+3.2x | | 65.35=d+127.25-37.50 | | -5v-5+20v=8v-12 | | -3(b-1)+8(b-3)=6b+7-5b | | x+4=2x(6x+1 | | 6m^2-11m-35=0 | | -x/4+18/4=-x | | 2(2x-2)=2(x+6) | | |2x-7|-x=13 | | (36x+18.5)=(17x+5) | | 4c+8c=-55=3c | | x+6/x-2=2/x | | 3X+5(5x+13)=-159 | | –7−3y=8+2y | | -4x+3(5x+7)=-56 | | 3y-(6y+5)-8=2(y+3)+5y-9 | | 15x-5+6x+40=180 | | -20=-8x+4(x-3) | | 2a+12=7a-3 | | d+155.1=0 | | -5(1-5b)+5(-8b-2)=-4b-8b | | 5(-v+6)=-11v-6 |